Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 3149-3155, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981450

RESUMO

This study explored the preservation effect of strigolactone analogs on Gastrodia elata tubers and screened out the suitable preservation measures of G. elata to provide a safer and more effective method for its storage and preservation. Fresh G. elata tubers were treated with 7FGR24, 2,4-D isooctyl ester, and maleic hydrazide, respectively. The growth of flower buds, the activities of CAT, and MDA, and the content of gastrodin and p-hydroxybenzyl alcohol were measured to compare the effects of different compounds on the storage and preservation of G. elata. The effects of different storage temperatures on the preservation of 7FGR24 were compared and analyzed. The gibberellin signal transduction receptor gene GeGID1 was cloned, and the effect of 7FGR24 on the expression level of GeGID1 was analyzed by quantitative polymerase chain reaction(qPCR). The toxicity of the G. elata preservative 7FGR24 was analyzed by intragastric administration in mice to evaluate its safety. The results showed that compared with 2,4-D isooctyl ester and maleic hydrazide, 7FGR24 treatment had a significant inhibitory effect on the growth of G. elata flower buds, and the CAT enzyme activity of G. elata was the highest, indicating that its preservation effect was stronger. Different storage temperatures had different effects on the preservation of G. elata, and the preservation effect was the strongest at 5 ℃. The open reading frame(ORF) of GeGID1 gene was 936 bp in length, and its expression level was significantly down-regulated after 7FGR24 treatment, indicating that 7FGR24 may inhibit the growth of flower buds by inhibiting the gibberellin signal of G. elata, thereby exerting a fresh-keeping effect. Feeding preservative 7FGR24 had no significant effect on the behavior and physiology of mice, indicating that it had no obvious toxicity. This study explored the application of the strigolactone analog 7FGR24 in the storage and preservation of G. elata and preliminarily established a method for the storage and preservation of G. elata, laying a foundation for the molecular mechanism of 7FGR24 in the storage and preservation of G. elata.


Assuntos
Animais , Camundongos , Gastrodia , Giberelinas , Hidrazida Maleica , Ésteres
2.
China Journal of Chinese Materia Medica ; (24): 3140-3148, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981449

RESUMO

The gene GeDTC encoding the dicarboxylate-tricarboxylate carrier protein in Gastrodia elata was cloned by specific primers which were designed based on the transcriptome data of G. elata. Bioinformatics analysis on GeDTC gene was carried out by using ExPASY, ClustalW, MEGA, etc. Positive transgenic plants and potato minituber were obtained by virtue of the potato genetic transformation system. Agronomic characters, such as size, weight, organic acid content, and starch content, of potato minituber were tested and analyzed and GeDTC gene function was preliminarily investigated. The results showed that the open reading frame of GeDTC gene was 981 bp in length and 326 amino acid residues were encoded, with a relative molecular weight of 35.01 kDa. It was predicted that the theoretical isoelectric point of GeDTC protein was 9.83, the instability coefficient was 27.88, and the average index of hydrophilicity was 0.104, which was indicative of a stable hydrophilic protein. GeDTC protein had a transmembrane structure and no signal peptide and was located in the inner membrane of mitochondria. The phylogenetic tree showed that GeDTC was highly homologous with DTC proteins of other plant species, among which GeDTC had the highest homology with DcDTC(XP_020675804.1) in Dendrobium candidum, reaching 85.89%. GeDTC overexpression vector pCambia1300-35Spro-GeDTC was constructed by double digests, and transgenic potato plants were obtained by Agrobacterium-mediated gene transformation. Compared with the wild-type plants, transgenic potato minituber harvested by transplanting had smaller size, lighter weight, lower organic acid content, and no significant difference in starch content. It is preliminarily induced that GeDTC is the efflux channel of tricarboxylate and related to the tuber development, which lays a foundation for further elucidating the molecular mechanism of G. elata tuber development.


Assuntos
Gastrodia/genética , Filogenia , Aminoácidos , Clonagem Molecular
3.
China Journal of Chinese Materia Medica ; (24): 3132-3139, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981448

RESUMO

Strigolactones(SLs) are a class of sesquiterpenoids derived from the carotenoid biosynthesis pathway with the core carbon skeleton consisting of tricyclic lactone(ABC tricyclic ring) and α,β-unsaturated furan ring(D ring). SLs are widely distributed in higher plants and are symbiotic signals between plants and Arbuscular mycorrhiza(AM), which play key roles in the evolution of plant colonizing terrestrial habitats. As a new type of plant hormone, SLs possess such important biological functions as inhibiting shoot branching(tillers), regulating root architecture, promoting secondary growth, and improving plant stress resistance. Therefore, SLs have attracted wide attention. The biological functions of SLs are not only closely related to the formation of "excellent shape and quality" of Chinese medicinal materials but also have important practical significance for the production of high-quality medicinal materials. However, SLs have been currently widely studied in model plants and crops such as Oryza sativa and Arabidopsis thaliana, and few related studies have been reported on SLs in medicinal plants, which need to be strengthened. This review focused on the latest research progress in the isolation and identification, biological and artificial synthesis pathways, biosynthesis sites and transport modes, signal transduction pathways and mechanisms, and biological functions of SLs, and prospected the research on the regulation mechanism of SLs in the growth and development of medicinal plants and their related application on targeted regulation of Chinese herbal medicine production, which is expected to provide some references for the in-depth research on SLs in the field of Chinese medicinal resources.


Assuntos
Arabidopsis , Lactonas , Plantas Medicinais
4.
Chinese Medical Journal ; (24): 2273-2278, 2017.
Artigo em Inglês | WPRIM | ID: wpr-248997

RESUMO

<p><b>BACKGROUND</b>Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive neuromuscular diseases resulting from dystrophin (DMD) gene mutations. It has been known that the carrier of DMD mutations may also have symptoms of the disease. While de novo mutation is quite common in BMD/DMD patients, it is rarely reported in the female carriers.</p><p><b>METHODS</b>Two sporadic Chinese patients with progressive muscular dystrophy and their familial members were recruited. The targeted next-generation sequencing (NGS) and the multiplex ligation-dependent probe analysis (MLPA) were performed in the proband. Blood tests, electrocardiography, echocardiography, and electromyography were also evaluated.</p><p><b>RESULTS</b>Two novel mutations of DMD gene were identified, c.7318C>T (p.Q2440*) in the male proband and c.4983dupA (p.A1662Sfs*24) in the female carrier. The MLPA analysis did not detect any large rearrangements. The haplotype analysis indicated that the two mutations were derived from de novo mutagenesis.</p><p><b>CONCLUSIONS</b>We identified two novel de novo mutations of DMD gene in two Chinese pedigrees, one of which caused a female patient with muscular dystrophy. The mutational analysis is important for DMD patients and carriers in the absence of a family history. The NGS can help detect the mutations in MLPA-negative patients.</p>

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA